DNA replication licensing and human cell proliferation.
نویسندگان
چکیده
The convergence point of growth regulatory pathways that control cell proliferation is the initiation of genome replication, the core of which is the assembly of pre-replicative complexes resulting in chromatin being "licensed" for DNA replication in the subsequent S phase. We have analysed regulation of the pre-replicative complex proteins ORC, Cdc6, and MCM in cycling and non-proliferating quiescent, differentiated and replicative senescent human cells. Moreover, a human cell-free DNA replication system has been exploited to study the replicative capacity of nuclei and cytosolic extracts prepared from these cells. These studies demonstrate that downregulation of the Cdc6 and MCM constituents of the replication initiation pathway is a common downstream mechanism for loss of proliferative capacity in human cells. Furthermore, analysis of MCM protein expression in self-renewing, stable and permanent human tissues shows that the three classes of tissue have developed very different growth control strategies with respect to replication licensing. Notably, in breast tissue we found striking differences between the proportion of mammary acinar cells that express MCM proteins and those labelled with conventional proliferation markers, raising the intriguing possibility that progenitor cells of some tissues are held in a prolonged G1 phase or "in-cycle arrest". We conclude that biomarkers for replication-licensed cells detect, in addition to actively proliferating cells, cells with growth potential, a concept that has major implications for developmental and cancer biology.
منابع مشابه
Epidermal growth factor receptor potentiates MCM7-mediated DNA replication through tyrosine phosphorylation of Lyn kinase in human cancers.
Epidermal growth factor receptor (EGFR) initiates a signaling cascade that leads to DNA synthesis and cell proliferation, but its role in regulating DNA replication licensing is unclear. Here, we show that activated EGFR phosphorylates the p56 isoform of Lyn, p56(Lyn), at Y32, which then phosphorylates MCM7, a licensing factor critical for DNA replication, at Y600 to increase its association wi...
متن کاملDNA replication licensing affects cell proliferation or endoreplication in a cell type-specific manner.
In eukaryotic cells, the function of DNA replication licensing components (Cdc6 and Cdt1, among others) is crucial for cell proliferation and genome stability. However, little is known about their role in whole organisms and whether licensing control interfaces with differentiation and developmental programs. Here, we study Arabidopsis thaliana CDT1, its regulation, and the consequences of over...
متن کاملDNA replication licensing in somatic and germ cells.
The DNA replication (or origin) licensing system ensures precise duplication of the genome in each cell cycle and is a powerful regulator of cell proliferation in metazoa. Studies in yeast, Drosophila melanogaster and Xenopus laevis have characterised the molecular machinery that constitutes the licensing system, but it remains to be determined how this important evolutionary conserved pathway ...
متن کاملCell Cycle and Senescence MicroRNA-26a/b Regulate DNA Replication Licensing, Tumorigenesis, and Prognosis by Targeting CDC6 in Lung Cancer
Cancer is characterized by mutations, genome rearrangements, epigenetic changes, and altered gene expression that enhance cell proliferation, invasion, and metastasis. To accommodate deregulated cellular proliferation, many DNA replication-initiation proteins are overexpressed in human cancers. However, the mechanism that represses the expression of these proteins in normal cells and the cellul...
متن کاملA Role of hIPI3 in DNA Replication Licensing in Human Cells.
The yeast Ipi3p is required for DNA replication and cell viability in Sacharomyces cerevisiae. It is an essential component of the Rix1 complex (Rix1p/Ipi2p-Ipi1p-Ipi3p) that is required for the processing of 35S pre-rRNA in pre-60S ribosomal particles and for the initiation of DNA replication. The human IPI3 homolog is WDR18 (WD repeat domain 18), which shares significant homology with yIpi3p....
متن کاملMicroRNA-26a/b regulate DNA replication licensing, tumorigenesis, and prognosis by targeting CDC6 in lung cancer.
UNLABELLED Cancer is characterized by mutations, genome rearrangements, epigenetic changes, and altered gene expression that enhance cell proliferation, invasion, and metastasis. To accommodate deregulated cellular proliferation, many DNA replication-initiation proteins are overexpressed in human cancers. However, the mechanism that represses the expression of these proteins in normal cells and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 114 Pt 11 شماره
صفحات -
تاریخ انتشار 2001